

Tetrahedron Letters 46 (2005) 5857-5861

Tetrahedron Letters

Six new indole alkaloids from Gelsemium sempervirens Ait. f.

Noriyuki Kogure, Chika Nishiya, Mariko Kitajima and Hiromitsu Takayama*

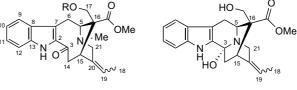
Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Received 8 June 2005; revised 23 June 2005; accepted 24 June 2005

Available online 14 July 2005

Abstract—One new yohimbane and five new sarpagine-type indole alkaloids were isolated from the radix of *Gelsemium sempervirens* Ait. f., and their structures were determined by spectroscopic analysis, chemical conversion or total synthesis. It was found that 2-acyl sarpagine-type alkaloids possessing an N_b -methyl group take a keto–amino structure or a transannular form in solution depending on the solvent.


© 2005 Elsevier Ltd. All rights reserved.


In our recent study, we proved that the original plant of 'Yakatsu,' one of the ancient medicines stored for more than 1250 years in Shosoin repository in Japan, was Gelsemium elegans Benth.¹ The genus Gelsemium, which belongs to Loganiaceae, comprises three species: G. elegans Benth., G. sempervirens Ait. f., and G. rankinii Small, from which more than fifty indole alkaloids have been isolated.²⁻⁴ In the course of our chemical studies on Gelsemium alkaloids, we investigated the constituents in the radix of G. sempervirens, and this has resulted in the isolation of one new yohimbane alkaloid (1) and five new sarpagine-type alkaloids (2–6). In this paper, we describe the structure elucidation of the new alkaloids as well as an interesting spectroscopic observation in the new sarpagine-type alkaloids.

The dried radix of *G. sempervirens* Ait. f. (413.7 g), that was cultivated in the medicinal plant garden of our university, was extracted with hot MeOH to give the MeOH extract (50.2 g). The crude alkaloidal fraction (4.88 g) obtained by a conventional procedure from the MeOH extract was purified by SiO₂ column chromatography to afford six new alkaloids, sempervilam (1, 17.8 mg), gelsempervine-A (2, 20.7 mg), -B (3, 7.6 mg), -C (4, 49.0 mg), -D (5, 5.3 mg), and 19*Z*-16-*epi*-voacarpine (6, 1.7 mg) (Fig. 1).

The high-resolution (HR)-FAB-MS spectrum of new alkaloid $(1)^5$ gave a molecular ion peak at m/z

Keywords: Indole alkaloid; Gelsemium; Structure elucidation; NMR; Total synthesis; Isomerization; Solvent effect.

R=H, 19E: gelsempervine-A (2) R=Ac, 19E: gelsempervine-B (3) R=H, 19Z: gelsempervine-C (4) R=Ac, 19Z: gelsempervine-D (5) 19*Z* : 19*Z*-16-*epi*-voacarpine (**6**) 19*E* : 16-*epi*-voacarpine (**7**)

Figure 1. Structures of new alkaloids (1–6) and known alkaloids (7, 8).

288.1272 [M]⁺ that corresponded to the molecular formula $C_{19}H_{16}N_2O$ (m/z 288.1263). The UV spectrum of 1 was similar to that of sempervirine (8).⁶ The ¹H NMR spectrum⁵ that showed signals corresponding to seven aromatic protons including one singlet and eight aliphatic protons was very similar to that of sempervirine (8) that possessed two singlet aromatic protons. The ¹³C NMR spectrum⁵ showed 15sp² carbons, including one carbonyl carbon at δ 58.8 and four sp³ methylenes. Heteronuclear multiple bond connectivity (HMBC) correlations between H-5 and the carbon at δ 58.8 revealed that the carbonyl function existed at

^{*} Corresponding author. Tel./fax: +81 43 290 2901; e-mail: htakayam@p.chiba-u.ac.jp

Scheme 1. Reagents and conditions: (a) cyclohexene-1-carboxylic acid, HOAT, EDCI, ⁱPr₂NEt, CH₂Cl₂, rt, 4 h, 87%; (b) hv, benzene, rt, 1 h, 36%; (c) DDQ, 1,4-dioxane, reflux, 20 min, 74%; (d) (1) ⁱBuOCl, Et₃N, CH₂Cl₂, 0 °C, 1 h; (2) DBU, toluene, reflux, 2 h, 1: 28%, 14: 24%; (e) *n*-Bu₃SnH, AIBN, toluene, reflux, 5.5 h, 74%.

C-21. The spectroscopic data led to the elucidation of structure 1 for the new alkaloid, sempervilam.

To confirm the structure, we planned the total synthesis of 1 (Scheme 1). 3,4-Dihydroharman (9), which was prepared from tryptamine by acetylation and subsequent Bishler-Napieralski reaction, was condensed with cyclohexene-1-carboxylic acid using HOAT and EDCI to give amide 10 in 87% yield. Photocyclization⁷ of 10 gave cycloadduct 11 in 36% yield together with the recovered starting material (14% recovery). Oxidation of 11 with DDQ gave pyridone 12 in 74% yield. Next, to aromatize the C-ring, 12 was treated with 'BuOCl and then with DBU to afford 1 in 28% yield together with 14-chloro derivative 13 (24% yield), the latter of which was treated with n-Bu₃SnH and AIBN to give 1 in 74% yield. The spectroscopic data (¹H NMR, ¹³C NMR, and UV) of synthetic compound 1 were completely identical with those of the natural product.

The HR-FAB-MS spectrum of new alkaloid (2),8 named gelsempervine-A, gave a protonated molecular ion peak at m/z 383.1935 ([MH]⁺) that corresponded to the molecular formula $C_{22}H_{27}N_2O_4$ (m/z 383.1971). The ¹H NMR spectrum (in CDCl₃) showed significant signals characteristic of an ethylidene group at δ 5.28 (ddd, H-19) and δ 1.71 (3H, d, H₃-18), together with four aromatic protons of the indole system [δ 7.69 (d, H-9), 7.37 (d, H-12), 7.31 (dd, H-11), 7.15 (dd, H-10)], an N_b -methyl group at δ 2.29 (3H, s) and a carboxy-methyl group at δ 3.68 (3H, s). The ¹³C NMR data of 2 and the known sarpagine-type alkaloid, 16-epi-voacarpine (7),⁹ are highly similar but for two exceptions, namely, the spectrum of 2 shows a signal due to the N_b -methyl group at δ 42.0 and does not exhibit a signal at the C-3 position, which is indicative of the hemiaminal function in 7. Taking the molecular formula into consideration, new alkaloid 2 was deduced to be the N_b -methyl derivative of 7. To reveal the structure, including the stereochemistry at C-16 and the geometry of the ethylidene side chain, 7 was converted into the N_b -methyl derivative by treating with formalin in the

Scheme 2. Chemical conversion from 16-epi-voacarpine (7) to gelsem-pervine-A (2).

presence of catalytic Pd–C under H₂ atmosphere. ¹⁰ The product was completely identical with natural alkaloid, gelsempervine-A, demonstrating the 3-oxo, that is, 2-acyl indole structure of **2** (Scheme 2).

However, perusal of the UV spectrum of **2** revealed typical absorptions of the indole nucleus in MeOH (λ_{max} , 290.5, 282, 220.5 nm). The 2-acyl indole alkaloids are known to exhibit a characteristic absorption at around 310 nm.¹¹ In order to investigate this unusual observa-

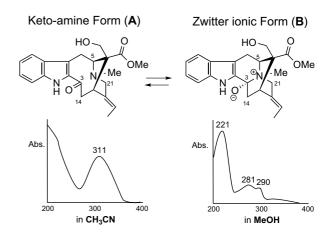


Figure 2. Two structural forms and UV spectra of gelsempervine-A (2).

Table 1. NMR data for 2

Position	2 in CDCl ₃		2 in CD ₃ CN		2 in CD ₃ OD	
	$^{1}\mathrm{H}^{\mathrm{a}}$	¹³ C ^b	¹ H ^c	¹³ C ^d	¹ H ^e	¹³ C ^d
2		133.9		133.6		136.5
2 3 5		*		*		_*
5	3.81 (d, 9.8)	57.7	3.59 (br s)	57.9	4.18 (d, 6.0)	62.5
6	3.63 (overlapped)	20.3	3.56 (d, 8.5)	20.3	3.39 (overlapped)	21.0
	3.23 (overlapped)		3.12 (d, 15.1)		3.41 (overlapped)	
7		117.0		119.0		112.2
8		128.1		128.3		128.3
9	7.69 (d, 7.7)	120.5	7.69 (d, 8.2)	120.7	7.52 (d, 8.1)	120.7
10	7.15 (dd, 7.7, 7.7)	120.3	7.05 (ddd, 8.2, 7.0, 1.2)	120.1	6.97 (ddd, 8.1, 7.0, 1.1)	120.7
11	7.31 (dd, 7.7, 7.7)	126.0	7.21 (ddd, 8.2, 7.0, 1.2)	125.6	7.10 (ddd, 8.1, 7.0, 1.1)	125.2
12	7.37 (d, 7.7)	112.1	7.35 (d, 8.2)	112.3	7.28 (d, 8.1)	112.9
13		135.9		136.3		138.1
14	3.20 (overlapped)	41.0	2.91 (dd, 14.3, 11.5)	40.0	2.51 (m)	42.4
	3.09 (br dd, 12.4, 11.3)		3.28 (br d, 14.3)		2.89 (dd, 14.2, 3.1)	
15	3.74 (br d, 11.3)	30.5	3.65 (br d, 11.5)	29.5	3.47 (dd, 7.1, 3.1)	33.1
16		57.1		57.1		57.8
17	3.90 (2H, m)	64.7	3.71 (d, 11.6)	64.1	3.65 (d, 11.0)	64.9
			4.03 (d, 11.6)		3.86 (d, 11.0)	
18	1.71 (3H, d, 6.6)	12.8	1.57 (3H, d, 6.9)	12.3	1.58 (3H, d, 7.0)	13.0
19	5.28 (ddd, 6.6, 6.6, 6.6)	120.5	5.08 (ddd, 6.9, 6.9, 6.9)	119.9	5.18 (ddd, 7.0, 7.0, 7.0)	120.4
20		133.8		136.4		133.6
21	3.00 (br d, 15.3)	54.2	2.71 (d, 14.8)	54.8	3.38 (overlapped)	56.3
	2.92 (d, 15.3)		2.63 (br d, 14.8)		3.08 (d, 15.4)	
N_a -H	9.26 (br s)		9.75 (br s)			
N_b -Me	2.29 (3H, s)	42.0	2.14 (3H, s)	41.8	2.36 (3H, s)	42.3
CO_2Me		175.3		174.7		176.0
CO_2Me	3.68 (3H, s)	52.3	3.49 (3H, s)	51.4	3.58 (3H, s)	52.8

^{*} Not detected.

tion in the UV spectrum, we next measured the UV as well as NMR spectra in protic or aprotic solvents. As a result, we found that 2 exhibited the typical absorption patterns of indole and 2-acyl indole alkaloids in MeOH and CH₃CN, respectively, as shown in Figure 2. Quite interestingly, the signals of the protons and carbons at C-5 and C-21 in CD₃OD were observed in the low field compared with those in CD₃CN (see Table 1). On the other hand, the signals of H₂-14 were observed in the lower field in CD₃CN than in CD₃OD. These spectroscopic data suggest that as shown in Figure 2, gelsempervine-A (2) existed exclusively as a C/D ring-opening structure with the keto-amine form (A) in such aprotic solvents as CD₃CN, and as a transannular structure with the zwitter ionic form (B) in such protic solvents as CD₃OD.

The other three new alkaloids, gelsempervine-B (3), ¹² -C (4), ¹³ and -D (5), ¹⁴ are the analogues of gelsempervine-A (2), that is, 3 is an acetyl derivative of the hydroxyl group at C-17 in 2, 4 is a 19Z isomer of 2, and 5 is an acetyl derivative of the hydroxyl group at C-17 in 4, and were elucidated by comparison of the ¹H NMR and ¹³C NMR data (Table 2) and differential NOE experiments, as shown in Figure 3. In these compounds, the above-described phenomena in the UV and NMR spectra for compound 2 were also observed.

Table 2. ¹³C NMR data for 3–7 in CDCl₃ (at 125 MHz)

Table 2. C INVIK data for 5-7 in CDC13 (at 125 M112)								
Position	3	4	5	6	7			
2	133.2	135.5**	134.2	136.9	137.1			
3	*	_*	*	80.7	80.5			
5	57.5	57.9	58.4	57.4	57.5			
6	20.5	21.4	21.4	21.4	21.3			
7	118.2	111.6	113.3	107.1	107.0			
8	128.4	127.3	127.7	125.8	125.7			
9	120.7	119.9	120.1	118.6	119.5			
10	120.5	119.9	120.2	119.6	115.7			
11	126.4	124.6	125.3	122.2	122.0			
12	112.1	111.9	112.1	110.9	110.9			
13	135.8	135.6**	135.9	136.3	136.3			
14	40.7	44.9	43.5	36.7	36.5			
15	29.9	39.3	37.5	40.9	33.7			
16	55.2	56.4	54.7	54.0	53.2			
17	65.8	64.8	65.9	63.1	63.3			
18	12.9	12.6	12.6	12.6	12.7			
19	121.2	120.3	121.7	116.5	118.5			
20	133.8	133.4	132.6	136.3	135.4			
21	53.9	51.2	51.1	46.0	48.1			
N_b -Me	42.2	41.1	42.0					
CO_2Me	173.9	175.4	173.9	175.8	175.8			
CO_2Me	52.2	52.5	52.5	52.5	52.1			
OCOMe	170.5		170.1					
OCOMe	20.7		20.7					

^{*} Not detected.

^a Measured at 500 MHz.

^b Measured at 125 MHz.

^c Measured at 400 MHz.

^d Measured at 150 MHz.

e Measured at 600 MHz.

^{**} Interchangeable.

gelsempervine-C (4) in CD_3OD gelsempervine-D (5) in $CDCl_3$

Figure 3. NOE experiments in 2-5.

The molecular formula of new alkaloid (6)¹⁵ was established to be $C_{21}H_{24}N_2O_4$, which was the same as that of 16-epi-voacarpine (7), from the HR-FAB-MS spectrum (m/z 369.1828 [MH]⁺). The ¹H NMR and ¹³C NMR spectra showed the existence of an ethylidene group, a carboxymethyl group and an indole skeleton (Table 2). A hemiaminal carbon was observed at δ 80.7 (C-3) in the ¹³C NMR spectrum similar to 16-epi-voacarpine (7). The chemical shifts of C-15 (7.2 ppm lower field than that of 7) and C-21 (2.1 ppm higher field than that of 7) indicated that the double bond has a Z-configuration, which was confirmed by NOE experiments. From these data, new alkaloid (6) was concluded to be 19Z-16-epi-voacarpine.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 16510156) from the Japan Society for the Promotion of Science.

References and notes

- Kitajima, M.; Arai, Y.; Takayama, H.; Aimi, N. Proc. Jpn. Acad. 1998, 74, 159–163.
- Takayama, H.; Sakai, S. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: San Diego, 1997; Vol. 49, Chapter 1, and references cited therein.
- Kitajima, M.; Kogure, N.; Yamaguchi, K.; Takayama, H.; Aimi, N. Org. Lett. 2003, 5, 2075–2078.
- 4. Kitajima, M.; Urano, A.; Kogure, N.; Takayama, H.; Aimi, N. Chem. Pharm. Bull. 2003, 51, 1211–1214.
- 5. Sempervilam (1), ocherous amorphous powder, EI-MS m/z (%): 288 (M⁺, 100). HRFAB-MS (NBA/PEG) m/z: 288.1272 (M⁺, calcd for $C_{19}H_{16}N_2O$ 288.1263). UV (MeOH) λ_{max} nm (log ε): 409.0 (4.32), 387.5 (4.17), 349.0 (3.69), 319.0 (3.97), 255.0 (4.24), 221.5 (4.37). ¹H NMR (500 MHz, pyridine- d_5): δ 13.25 (1H, s, N_a -H), 9.21 (1H, d, J = 7.4 Hz, H-5), 8.16 (1H, d, J = 7.6 Hz, H-9), 7.65 (1H, d, J = 7.6 Hz, H-12), 7.63 (1H, d, J = 7.4 Hz, H-6), 7.48 (1H, dd, J = 7.6, 7.6 Hz, H-11), 7.37 (1H, dd, J = 7.6,

- 7.6 Hz, H-10), 6.91 (1H, br s, H-14), 2.93 (2H, dd, J = 6.4, 6.4 Hz, H₂-19), 2.52 (2H, dd, J = 6.1, 6.1 Hz, H₂-16), 1.68 (2H, m, H₂-17), 1.59 (2H, m, H₂-18). ¹³C NMR (125 MHz, pyridine- d_5): δ 158.8 (C-21), 146.0 (C-15), 140.6 (C-13), 131.7 (C-2), 131.2 (C-3), 126.2 (C-11), 123.0 (C-8*), 120.9 (C-10), 120.7 (C-9), 119.1 (C-5), 117.8 (C-20), 116.8 (C-7), 112.4 (C-12), 108.1 (C-6), 98.1 (C-14), 30.0 (C-16), 25.0 (C-19), 23.0 (C-17), 22.5 (C-18). *: under C₅D₅N signal.
- (a) Woodward, R. B. J. Am. Chem. Soc. 1949, 71, 379; (b) Gribble, G. W.; Barden, T. C.; Johnson, D. A. Tetrahedron 1988, 44, 3195–3202; (c) Chatterjee, A.; Sahu, A.; Saha, M.; Banerji, J. Monatsh. Chem. 1996, 127, 1259–1262.
- Ninomiya, I.; Tada, Y.; Kiguchi, T.; Yamamoto, O.; Naito, T. Heterocycles 1978, 9, 1527–1531.
- 8. Gelsempervine-A (2), colorless amorphous powder, EI-MS m/z (%): 382 (M⁺, 17), 180 (100). HRFAB-MS (NBA/PEG) m/z: 383.1935 (MH⁺, calcd for $C_{22}H_{27}N_2O_4$ 383.1971). UV (MeOH) λ_{max} nm (log ε): 290.5 (3.65), 282.0 (3.71), 220.5 (4.44). UV (CH₃CN) λ_{max} nm (log ε): 311.5 (3.99), 224.5 (4.17). IR (ATR, cm⁻¹): 3492, 3385, 2923, 1720, 1648. IR (CHCl₃, cm⁻¹): 3451, 3342, 2951, 1732, 1639. CD (c = 0.262 mM, MeOH, 23 °C) $\Delta\varepsilon$ (λ nm): 0 (396), +1.91 (321), 0 (299), -1.51 (282), 0 (265), +1.12 (257), 0 (243), -10.32 (224), 0 (210), +3.55 (203).
- 9. Ponglux, D.; Wongseripipatana, S.; Subhadhirasakul, S.; Takayama, H.; Yokota, M.; Ogata, K.; Phisalaphong, C.; Aimi, N.; Sakai, S. *Tetrahedron* **1988**, *44*, 5075–5094.
- Gorman, M.; Sweeny, J. Tetrahedron Lett. 1964, 5, 3105–3111.
- (a) Dolby, L. J.; Sakai, S. *Tetrahedron* 1967, 23, 1–9; (b)
 Sakai, S.; Yamanaka, E.; Dolby, L. *Yakugaku Zasshi* 1977, 97, 309–319.
- 12. Gelsempervine-B (3), colorless amorphous powder, EI-MS m/z (%): 424 (M⁺, 96), 365 (56), 192 (100), 180 (96). HRFAB-MS (NBA/PEG) m/z: 425.2113 (MH⁺, calcd for $C_{24}H_{29}N_2O_5$ 425.2076). UV (MeOH) λ_{max} nm (log ϵ): 316.5 (3.65), 290.5 (3.72), 282.0 (3.74), 219.5 (4.46). UV (CH₃CN) λ_{max} nm (log ε): 312.5 (3.92), 221.0 (4.07). ¹H NMR (500 MHz, CDCl₃): δ 8.96 (1H, br s, N_a -H), 7.73 (1H, dd, J = 8.2, 0.6 Hz, H-9), 7.35 (2H, overlapped, H-11, H-12), 7.17 (1H, ddd, *J* = 8.2, 6.4, 1.7 Hz, H-10), 5.29 (1H, ddd, J = 6.9, 6.9, 6.9 Hz, H-19), 4.59 (1H, d, J = 11.9 Hz, H-17, 4.29 (1H, d, J = 11.9 Hz, H-17), 3.80(1H, br dd, J = 11.8, 2.4 Hz, H-15), 3.75 (1H, dd, J = 15.9, 9.2 Hz, H-6 β), 3.69 (1H, br d, J = 9.2 Hz, H-5), 3.65 (3H, s, CO₂Me), 3.26 (1H, overlapped, H-14α), 3.23 (1H, overlapped, H-6 α), 3.16 (1H, dd, J = 14.3, 11.8 Hz, H-14 β), 2.90 (1H, d, J = 15.0 Hz, H-21 β), 2.79 (1H, br d, J = 15.0 Hz, H-21 α), 2.29 (3H, s, N_b -Me), 2.02 (3H, s, OCOMe), 1.75 (3H, dd, J = 6.9, 1.2 Hz, H₃-18). IR (ATR, cm^{-1}) : 3313, 2925, 1742, 1640. CD (c = 0.210 mM, MeOH, 23 °C) $\Delta \varepsilon$ (λ nm): 0 (396), +2.29 (318), 0 (302), -1.64 (286), 0 (264), +1.24 (252), 0 (246), -8.38 (223), 0
- 13. Gelsempervine-C (4), colorless amorphous powder, FAB-MS (NBA) m/z: 383 (MH⁺). HRFAB-MS (NBA/PEG) m/z: 383.1939 (MH⁺, calcd. for $C_{22}H_{27}N_2O_4$ 383.1971). UV (MeOH) λ_{max} nm (log ε): 290.0 (3.70), 281.0 (3.80), 221.0 (4.54). UV (CH₃CN) λ_{max} nm (log ε): 309.5 (4.02), 227.5 (4.27). ¹H NMR (500 MHz, CDCl₃): δ 9.17 (1H, br s, N_a -H), 7.61 (1H, d, J = 7.7 Hz, H-9), 7.36 (1H, d, J = 7.7 Hz, H-12), 7.27 (1H, dd, J = 7.7, 7.7 Hz, H-11), 7.13 (1H, dd, J = 7.7, 7.7 Hz, H-10), 5.36 (1H, ddd, J = 6.7, 6.7, 6.7 Hz, H-19), 4.02 (1H, d, J = 7.2 Hz, H-5), 3.99 (1H, d, J = 11.2 Hz, H-17), 3.70 (3H, s, CO₂Me), 3.43 (1H, dd, J = 17.6, 7.2 Hz, H-6 β), 3.31 (1H, d, J = 17.6 Hz, H-6 α), 3.12 (1H, overlapped, H-21 β), 3.10 (1H, overlapped, H-15), 3.09

- (1H, overlapped, H-21 α), 3.01 (1H, d, J = 13.9 Hz, H-14 β), 2.78 (1H, dd, J = 13.9, 8.2 Hz, H-14 α), 2.22 (3H, s, N_b -Me), 1.45 (3H, d, J = 6.7 Hz, H₃-18). IR (ATR, cm⁻ 3308, 2947, 1728, 1633. IR (CHCl₃, cm⁻¹): 3454, 3324, 2952, 1733, 1639. CD (c = 0.225 mM, MeOH, 23 °C) Δε (λ nm): 0 (377), +1.21 (320), 0 (301), -1.42 (289), -1.61 (281), 0 (263), +0.56 (252), 0 (247), -13.12 (226), 0 (216), +5.01 (209). In the 1D ¹³C NMR spectrum, the signal due to C-3 in compounds 2–5 could not be observed under various experimental conditions (high or low temperature in various solvents; using prolonged pulse delay time). However, in the case of gelsempervine-C, HMBC correlations between the protons at H-21 and H-5 and the signal at δ 125.5 were observed in CD₃OD. These correlations enabled us to assign the chemical shift of C-3 in 4, and the HMBC connectivities supported the transannular form in the protic solvent.
- 14. Gelsempervine-D (5), colorless amorphous powder, FAB-MS (NBA) m/z: 425 (MH⁺). HRFAB-MS (NBA/PEG) m/z: 425.2059 (MH⁺, calcd for $C_{24}H_{29}N_2O_5$ 425.2076). UV (MeOH) λ_{max} nm (log ε): 315.0 (3.36), 290.5 (3.71), 282.0 (3.77), 220.0 (4.48). UV (CH₃CN) λ_{max} nm (log ε): 311.5 (4.01), 221.5 (4.21). ¹H NMR (500 MHz, CDCl₃): δ 9.40 (1H, br s, N_a -H), 7.65 (1H, d, J = 7.7 Hz, H-9), 7.40 (1H, d, J = 7.7 Hz, H-12), 7.31 (1H, dd, J = 7.7, 7.7 Hz, H-11), 7.16 (1H, dd, J = 7.7, 7.7 Hz, H-10), 5.44 (1H, ddd, J = 6.9, 6.9, 6.9 Hz, H-19), 4.61 (1H, d, J = 11.6 Hz, H-17), 4.33 (1H, d, J = 11.6 Hz, H-17), 3.95 (1H, br d,
- J = 7.8 Hz, H-5), 3.67 (3H, s, CO₂Me), 3.59 (1H, dd, J = 17.1, 7.8 Hz, H-6 β), 3.36 (1H, br d, J = 7.0 Hz, H-15), 3.20 (2H, overlapped, H-6 α , H-21 β), 3.14 (1H, dd, J = 14.0, 2.9 Hz, H-14 β), 2.95 (2H, overlapped, H-14 α , H-21 α), 2.35 (3H, s, N_b -Me), 2.04 (3H, s, OCOMe), 1.44 (3H, d, J = 6.9 Hz, H₃-18). IR (ATR, cm⁻¹): 3344, 2923, 1736, 1636. IR (CHCl₃, cm⁻¹): 3451, 3316, 2928, 1737, 1641. CD (c = 0.224 mM, MeOH, 23 °C) $\Delta\varepsilon$ (λ nm): 0 (392), +1.46 (318), 0 (301), -1.36 (282), 0 (265), +1.10 (251), 0 (244), -6.99 (224), 0 (214), +3.15 (204).
- 15. 19Z-16-epi-Voacarpine (6), colorless amorphous powder, EI-MS m/z (%): 368 (M⁺, 100), 265 (61), 184 (78). HRFAB-MS (NBA/PEG) m/z: 369.1828 (MH⁺, calcd for $C_{21}H_{25}N_2O_4$ 369.1814). UV (MeOH) λ_{max} nm (log ϵ): 290.5 (3.71), 282.5 (3.79), 225.5 (4.49). ¹H NMR (600 MHz, CDCl₃): δ 8.00 (1H, br s, N_a -H), 7.10 (1H, d, J = 8.0 Hz, H-12), 7.05 (1H, overlapped, H-11), 7.04 (1H, m)overlapped, H-9), 6.90 (1H, ddd, J = 8.0, 6.9, 1.1 Hz, H-10), 5.25 (1H, m, H-19), 4.46 (1H, d, J = 5.7 Hz, H-5), 4.16 (1H, d, J = 17.6, H-21), 3.70 (3H, s, CO_2Me), 3.43 (2H, m, H₂-17), 3.38 (1H, br d, J = 17.6 Hz, H-21), 2.86 $(1H, dd, J = 16.3, 5.7 Hz, H-6\alpha), 2.75 (1H, d, J = 16.3 Hz,$ H-6 β), 2.69 (1H, br dd, J = 2.9, 2.9 Hz, H-15), 2.08 (1H, dd, J = 14.1, 2.9 Hz, H-14 β), 1.84 (1H, dd, J = 14.1, 2.9 Hz, H-14 α), 1.53 (3H, d, J = 6.9 Hz, H₃-18). IR (ATR, cm⁻¹): 3330, 2925, 1731. CD (c = 0.272 mM, MeOH, 23 °C) $\Delta \varepsilon$ (λ nm): 0 (319), +0.79 (271), 0 (244), -13.02 (230), 0 (215), +1.12 (211), +2.16 (206).